PAGE
9

[image: image1.png]Best Practices for
Accelerating Problem
Resolution in .NET
Applications and
Web Services

[image: image2.png]Abstract:

Whether you are in the process of building Microsoft.NET applications
or have .NETbased Weﬁ Services already running in production, you
must ensure that these applications deliver the expected return on
investment (ROI), and that means high levels of application availability
and performance.

With .NET, you have to make myriad components and services—
some developed in-house and some developed by a 3rd party—work
ether flawlessly on a whole new software infrastructure to form a
reliable, scalable business process. Whether migrating an existing
pllcchon or developing z:om scratch, you are bound to face many
ﬁu llenges when problems occur. And problems will occur.

An effective .NET application problem resolution strategy is absolutely
critical to minimize the risk of deploying .NET applications. To help,
this paper:

1. Identifies the main components of the Microsoft .NET architecture

2. Outlines the most common .NET application problems

3. Presents sirategies and best practices for .NET application
management and support, which minimize problem resolution
time and increase return on investment (ROI).

[image: image3.png]Table of Contents

Overview 4
The Basics of Microsoft NET 5
Common Problems with .NET Applications 6
Identify's AppSight Application Problem Resolution System 8

How AppSight Helps Pinpoint Problems in .NET Applications ... 10
AppSight and Internal Application Logging 14
About Identify Software o 15

[image: image4.png]Overview

Whether you are in the process of building NET plications or
whether you have .NET Eased Web services already running in
production, you must ensure that these applications dehverﬁ\
expected return on investment (ROI). Efficiently supporting these
NET applications and minimizing time-fo-resolution when problems
occur are therefore absolutely critical.

With .NET applications, you will have to make myriad components
and services, some developed inhouse and some developed by

o 31d pty, sork flawlesely together on & whele new soware
infrastructure to form a reliable, scalable business process.
Whether migrating an existing application or developing from
scratch, you are bound fo face many challenges when problems
oceur. And problems will occur.

This paper introduces the main components of the Microsoft .NET
archifecture and outlines the most common .NET application problems.
It then describes how Identify's AppSight™ is used to minimize the
risk of deploying .NET applications and accelerate the application
problem resolution process.

[image: image5.png]“Visual Studio .NET and the
_NET Framework are among
the most important products
ever released by Microsoft
and uderscore our long-ferm
commitment to developer
success. As the first fully
integrated environment for
building XML Web services
and next generation Internet
applications, Visual Studio
_NET and the .NET Framework
will enable the next big wave
of developer opportunity,
creating XML Web services
that will soon become the
basis for all major new
software development.”

Bill Gates
Chief Software Architect
Microsoft Corporation

The Basics of Microsoft .NET

® Microsoft .NET is Microsoft's platform for building N-ier
applications. Microsoft .NET encompasses a family of products built
on industry and Internet standards that provide for eucE aspect of
developing (Visual Studio .NET), managing (.NET Servers) and
using Web services.

® Web services is a software technology that is used to connect
applications and users over standard Internet protocols. Web services
can be implemented through Microsoft Windows DNA, Microsoft
.NET, and J2EE applications.

® XML (Extensible Markup Language) is the universal format for
Web services. XML is a set of rules for designing text formats for
data, in a way that produces files that are easy to generate

and read (by a computer), and that are unambiguous and
platform-independent.

 SOAP (Simple Object Access Protocol) is a protocol built on XML.
Using SOAP, applications call each other in a standard, loosely
coup?ed way, making it possible to build applications that are
distributed across the Internet. If you think orvhe interactions
between XML Web services as a phone call, XML describes the
things that applications say to each other in their conversations
and SOAP describes how they call each other on the phone.

 CIR (Common Language Runtime) is a core component of the
Microsoft .NET Framework. Similar to a Java Virtual Machine, the
CIR is a native Windows program that provides various services,
such as memory management, security management and error
handling, to .NET managed applications. Programs can be written
for the CLR in any .NET language, including C# and VB.NET.

o ASPNET, the new version of Microsoft's ASP, is a programmin
framework built on the CIR that can be used on a server to buil
NET Web applications.

* ADO.NET, the new version of Microsoft's ADO, provides .NET
applications with optimized access to data sources such as
Microsoft SQL Server, as well as data sources exposed through

OLE DB and XML.

[image: image6.png]* Remoting is a .NET technology for calling procedures over the
network using XML, SOAP, and HTTP just as if they were hosted on
the same computer (you can think of Remoting as the .NET version
of DCOM).

* Interop is the process of getting managed and unmanaged
objects [e.g. COM obiects) to work together.

* Assembly is the .NET logical equivalent of a DLL, a reusable
application component.

* GC (Garbage Collection) is the .NET mechanism for managing
memory, designed to absolve developers from tracking memory
usage and knowing when to free memory.

Common Problems with .NET Applications

While Microsoft .NET addresses many of the issues historically
associated with building and deploying distributed applications, it
presents many new challenges related to deployment and support.
This is due to the following reasons:

» NET applications are typically highly distributed; hence problem
triage is complex and time-consuming.

* NET is a gigantic new set of technologies and concepts. As with
any new software platform, problems are common and inevitable.

* Web services often translate to significantly higher levels of
dependency between applications and a growing number of end-
users, thus increasing the direct and indirect costs of problems and
inefficiencies in the support process.

The following are some of the common problems associated with
NET applications:

Performance Problems
As with any software environment, performance problems are
common and often difficult to pinpoint. The possible causes for

these problems include:

o Inefficient code (e.g. frequent exceptions, many large objects,

[image: image7.png]inefficient database calls — using ad hoc queries rather than
compiled stored procedures).

* Memory consumption [e.g. not freeing objects when they are no
longer used, allocating too much memory per request, inadequate
definition of maximum number of Worker and 1O threads).

 Improper application settings (e.g. inadequate session-state
provider, buffering disabled on a Web Forms page).

* Interoperability with legacy Windows code (e.g. marshaling a lot
of data from COM/COM+ to managed .NET objects).

o Infrastructure problems (e.g. bad network response times that
cause degradation in application performance).

Functional Problems

The Microsoft .NET Framework has been designed o free the
developer from dealing with various programming tasks, such
as memory allocations and security. However, just like in any
development platform, coding errors are still in abundance.
Some of the most common coding errors are:

* Incorrect business logic (e.g. incorrect calculation of interest rate).
© Thread deadlock situations.

* A severe error which leads to an application crash.
Configuration Problems

While .NET promises to resolve “DlL-hell” issues, configuration
problems are far from gone. The following detail some of the

common configuration issues with .NET applications:

* Insufficient permissions to access a resource [e.g. no permission
to write to an application directory).

 Incompatible components (e.g. incorrect versions of assemblies or
COM/COM+ objects).

 Incorrect application seftings in .NET configuration files

[image: image8.png]“As the Microsoft NET
Framework is becoming
one of the preferred
platforms for deploying
Web services, application
support technologies are
critical o the success of
software projects. Identify’s
AppSight solution enables
IT organizations and
customer support feams

to provide better service
to their customers and
reduce cost of ownership
by pinpointing problems
in .NET connected
applications in production.”

John Monigomery
Director, Developer and
Platform Evangelism
Microsoft Corporation

o Conlflicts with other applications [e.g. an anti-virus tool that causes a
Web application to restart intermittently).

User Errors
.NET applications are built to serve end-users. As with any software

application, users make mistakes. Some of these mistakes are resolved
quickly, while some take days to figure out.

Ident

When software problems occur, IT teams Ef(vpu:ully go though a costly,
iterative process to gather information and replicate the problem before
beginning the root cause analysis and resolution phases. Identify’s
AppSight automates this entire process.

ify’s AppSight Application Problem Resolution System

Black Box
*Copture”

Repository
*Communicate®

AppSight
Consolo
*Pinpaint"

Custom views for Operations,
Support, and Development

AppSight leverages patented Black Box software technology to monitor
application execution and capture a synchronized, realtime log of user
actions, system events, performcnce metrics, configuration data, and
code execution flow—much like the “black box” flight recorder on an aircraft
captures a reakime record of a flight. The AppSight Black Box log can
be replayed and analyzed to quid ?dy pinpoint the root cause onﬁ kinds
of Microsoft Windows, .NET, and J2EE application problems, whether
related to performunoe, configuration issues, user mistakes, or code errors.
turing actual prol:|em%\|s|ory in a centralized repository, AppSight
prow:res the basis for team collaboration and communication. By allowing
each member of the team to quickly analyze problem information using
role-based views, rather than recreate the prol T}|em AppSight eliminates
up to 70% of the cy<:|e fime traditionally consumed l:y root cause analysis.

[image: image9.png]1. AppSights Black Box
software technology
records full problem
data on the clent
and server sides.

2. Black Box logs
are communicated
throughout the support
chain using the
organization's existing

service desk system.

3. The AppSight console
views enable sach
support level (IT Ops,
Service Desk and
Development) fo
play back Black Box
recordings a the
reqired level of
defail and identify
foof cause of any
application problem.

B3 ouvATn - ST T TR T STy

seasssaeasnastss)

The AppSight/System view plays back Black Box recordings of muliple
leveks, showing user actions on the fop pane and the systemlevel execution
log on the bottom pane. This view also includes information on application
configuration, performance, memory tilization, and more.

BiouratuiEse®
[T

Fully synchronized with AppSight/System, the AppSight/Cods view plays
back Black Box recordings af the cods-evel, displaying function calls,
arguments, variable values, and more.

[image: image10.png]How AppSight Helps Pinpoint Problems in .NET Applications

Identify’s AppSight provides complete support of .NET applications.
AppSight's B\ucE Box software technology records all major .NET
Framework components, including Web services calls, Remoting
calls, ASPNET, ADO.NET, NET Config, GC, CIR, and more. Specially
designed for .NET, the AppSight console provides powerful views
that empower every person involved in application support to play
back and pinpoint the root cause of problems quickly and efficiently.

The following table lists examples of specific .NET application problems
and describes how they are pinpointed by Identify’s AppSight.

CONFIGURATION PROBLEMS

Root Cause How AppSight Black Box Pinpoints Root Cause
Insufficient access The Black Box records all accesses and
permissions attempted accesses of the application to

(e.g. application cannot any resource on the computer, enabling a

write information to a support engineer to quickly identify the

directory) problematic resource and root cause.
Additionally, users can compare
configuration to pinpoint such issues.

Confliet with other The Black Box records all the interactions
applications of the user’s application with any other

(e.g. an antivirus applications, thus allowing the AppSight
tool causes the Web user fo quickly identify conflict situations.

application to restart Furthermore, the Black Box can record
and lose session data) any 3rd party application to understand
its impact on the user’s application.

Incorrect application The Black Box records all accesses to
seftings [e.g. incorrect application configuration files .NET

port settings for the Config class), therefore allowing the support
application) engineer to track application settings and

understand their impact on application’s
execution. Using the AppSight console,
users can compare application configuration
recorded on two computers for rapid
identification of differences.

[image: image11.png]Furthermore, the Black Box can be
configured to collect any configuration
(or log) files and save them as part of the
Black Box log, thus providing all the data
required to pinpoint any application
configuration issue.

Problems with accessing The Black Box records all the interactions

external resources of the user’s application with any external
or services [e.g. a Web resource or service, thus allowing the
service cannot be AppSight user to quickly pinpoint an:
invoked) access issues. For exumpre, the Blac)

Box will show unsuccessful Web services
calls, .NET Remoting calls, or failures in
accessing a database.

Incompatible components The Black Box records the interactions of

(e.g. an incorrect version the application with home grown and 3rd

of a 3rd party component party components, thus allowing the user

used by the application] to easily rdemrg unsuccessful component
invocations and calls.

FUNCTIONAL PROBLEMS

Incorrect business logic The Black Box records the complete

(e.g. incorrect calculation flow of managed and unmanaged code,

of interest rate) including function calls, arguments,
refurn values, variable values, and stack.
It also captures handled and unhandled
exceptions, which may indicate a code
problem. The Black Box does not require
any change in the application, and
runs against optimized, production
applications.

Additionally, the Black Box can
automatically record internal logging
functions (.NET Trace class). The events
are infegrated into the Black Box log,
thereby dramatically enhancing the
value of infernal logging.

[image: image12.png]Hang (e.g. due to a
thread deadlock situa-
tion or the application is
waiting for a response
from an external
resource, such as a
database)

Crash (e.g. due to an
access violation with
COM object]

The Black Box records the execution of
multiple threads and processes at the
code level, allowing a support engineer
or a developer to easily find the root
cause of hang situations.

The Black Box records application execufion
at the code level and automatically
captures a stack dump upon crash events,
thus allowing a support engineer or a
developer to quickly understand the

roof cause of crashes.

PERFORMANCE PROBLEMS

Slow external Web
services

Inefficient code

(e.g. an application
opens connection to the
database upon every
request)

Memory consumption

The Black Box records all Web services
calls made by the application (client and
server side), thus allowing the AppSight
user fo easily defect a Web service that is
not performing as expected. To understand
the root cause of the problem, a Black
Box can be deployed on the remote
computer which hosts the Web service.
Furthermore, in a distributed environment,
the AppSight user can follow Web services
calls from client o server and from server
to server in order to identify the point of
failure, and then drill down info code
level execution.

The Black Box records the complete
execution flow at the system and code
levels, providing information on number of
function calls and their duration at an
window of time, thus allowing a developer
to easily identify problem area and drill
down to locate inefficient code.

The Black Box records performance
counters that can indicate that the cause
of a performance problem is memory
(e.g. % of time spent on Garbage
Collection, allocated bytes/sec.]

[image: image13.png]Garbage Collection
(GQ)

Application and
Framework seftings.
(e.g. max number of
threads in thread pool
is insufficient)

Inefficient use of
Remoting (e.g. too much
data transferred in each
Remoting call)

Interoperability

END-USER ERRORS

End-user mistakes

The Black Box records performance
counters related to .NET GC. These
counters indicate the status of GC at

any point in fime. Fully synchronized with
all other recorded data (e.g. assembly
invocations, database calls, process
start, and more), a developer can easily
identify GCrelated problems.

The Black Box records all necessary
performance counters, messages written
to the Event Log, as well as application
and framework settings (.NET config file
accesses, |IS configuration and browser
seftings). Integrated into the Black Box
log, this data allows the support engineer
to pinpoint non-optimized settings that
cause application slow downs.

The Black Box records all Remoting calls
(both on the client and server sides) and
presents their performance in the application
performance dialog, thus allowing a
developer to pinpoint the slow performing
calls. When required, the AppSight user
can drill down to analyze execution of
Remoting calls at the code level.

The Black Box records the interactions

of the application with home grown and
3rd party components, thus allowing

the AppSight user to easily identify
performance bottlenecks that are caused
by external .NET and legacy components.

The Black Box records all end-user
actions and allows a support engineer to
play them back as a movie or text, thus
pinpointing end-user errors and easily
understanding the end-user experience.

[image: image14.png]AppSight and Internal Application Logging

In addition to achieving tremendous savings in application support
and enhancing customer service, users can also realize significant
cost reductions in development of internal logging mechanisms.
These development efforts, which are taken solely for the purpose
of application support, may represent 10%-30% of the total cost
of the project. AppSight's Black Box software technology records
production-ready applications at the code level using a configurable
recording profile, thus eliminating the need to build and maintain
internal E)ggers. Using AppSight, developers are able to dedicate
more time to building new functionality, rather than investing fime
in developing logging code, which adds no value to end-users.

If internal logging functions (i.e., .NET Trace class functions) exist,
the Black Box will automatically embed them into the recorded
log, thus allowing AppSight users to retain their investment in
internal logging.

i [opeeeron B
a7ss Byt dike (553,365)
3767 Epouse diked (512,350)
3763 Eyuse dikes (521,401
3781 - L wiite trace message "Ticke veus i ARGC"
97 Bl 2 Wi trace message el Aocks_infe_Prosy Getinfa (A0
97 ElbscestonSysiem et Webscestion
9% EsceptionSysiem invaidCpsrekionEception
390 Bywouse deked (523402)
am Eywouse doked (522,402)
amm Twewse dekedisiz g
3993 @ 5 ke trace message 'an exception nccuved - Client found response corvent £
599 @ i W moce s Stackinfo: - Syem e Sevies Pt Seaprt_|
407 Wyhouse dickedi710,520) -
1 I L’J

AppSight/System plays back a Black Box recording that includes NET
Trace messages.

[image: image15.png]About Identify Software

Identify® is the leader in application problem resolution software,
helping hundreds of enterprises and software vendors speed
application delivery, increase application quality, performance, and
availability, and reduce application support costs. The company’s
AppSight Application Problem Resolution System leverages patented
Black Box Application Flight Recorder technology to capture,
communicate, and determine the root cause of application problems,
thereby dramatically accelerating problem resolution processes
across the application lifecycle. Founded in 1996, Identify is a
global organization, with operational headquarters in New York
and offices throughout the U.S., Europe, and Asia Pacific.

